Slide -1 (can use arrow keys to navigate; press "t" for timer or "h" to show/hide this UI and additional notes)

Introduction

Hello! This is a presentation about Euler’s formula that I presented at my high school’s math club on February 6, 2024.

Instead of making a boring slideshow, I decided to make an interactive website for my presentation!

These slides won’t make too much sense if you view them by themselves, so I’ve added some additional notes at the bottom of some slides (such as this one!) These additional notes are similar to the things I actually said while I was presenting.

Notes:

Euler’s Formula Explained Simply

(and a preview of calculus)

By Eldrick Chen, calculus enjoyer and creator of unnamed calc website

Notes:

Exponentiation: It’s repeated multiplication!

\[ \large{2^3 = 2 \times 2 \times 2 = 8} \] \[ \large{3^4 = 3 \times 3 \times 3 \times 3 = 81} \]

Sounds simple, right?

Right.....?

Notes:

Except it’s not so simple... we can expand the definition of exponentiation:

Zero exponent:

\[ \large{2^0 = 1} \]

Negative exponent:

\[ \large{2^{-1} = \frac{1}{2}} \]

Fractional exponent:

\[ \large{2^{1/2} = \sqrt{2}} \]

Irrational exponent:

\[ \large{2^\pi = 8.824977...} \]
Notes:

But just how far can we push the definition of exponentiation?

\[ \large{i = \sqrt{-1}} \] \[ \large{i^2 = -1} \] \[ \large{2^i = \text{???}} \]

Can we make any sense of imaginary exponents?

Exponential Functions

The graph of \(a^x\) and the line tangent to \((0, 1)\)

\(a = \)

Slope at \(x = 0\) (Derivative):

Notes:

The Beauty of \(e^x\), the Natural Exponential Function

The graph of \(e^x\) and the line tangent to \((x, e^x)\)

\(x = \)

\(e^x \approx \)

Slope at \(x\) (first derivative):

Notes:

How can we find an alternate representation of \(\sin(x)\)?

The graph of \(f(x) = \sin(x)\) and its Taylor polynomial \(p(x)\)

Degree:

Notes:

What if we extended our polynomial to infinity?

We get the Taylor series for \(\sin(x)\)!

\[ \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \]

\(\sin(1)\) calculated with the Taylor series:

Degree:

True value of \(\sin(1)\)
Polynomial value at \(x = 1\)
Approximation error
Notes:

How can we find an alternate representation of \(\cos(x)\)?

The graph of \(f(x) = \cos(x)\) and its Taylor polynomial \(p(x)\)

Degree:

Notes:

Extending that last polynomial to infinity gives us the Taylor series for \(\cos(x)\):

\[ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \]

\(\cos(1)\) calculated with the Taylor series:

Degree:

True value of \(\cos(1)\)
Polynomial value at \(x = 1\)
Approximation error

The Taylor Polynomials for \(e^x\)

The graph of \(f(x) = e^x\) and its Taylor polynomial \(p(x)\)

Degree:

Notes:

A new definition of exponentiation?

If we take our Taylor polynomial for \(e^x\) and add infinitely many terms, we can get the Taylor series for \(e^x\):

\[ e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots \]

\(e\) calculated with the Taylor series:

Degree:

True value of \(e\)
Polynomial value at \(x = 1\)
Approximation error
Notes:

The Major Breakthrough

What if we put an imaginary number into the Taylor series for \(e^x\)?

\[ e^i = 1 + i + \frac{i^2}{2!} + \frac{i^3}{3!} + \frac{i^4}{4!} + \frac{i^5}{5!} + \cdots \]

\(e^i\) calculated with the Taylor series:

Degree:

Polynomial value at \(x = i\):

What exactly is \(e^i\)?

\[ \begin{flalign} e^i &= 1 + i + \frac{i^2}{2!} + \frac{i^3}{3!} + \frac{i^4}{4!} + \frac{i^5}{5!} + \frac{i^6}{6!} + \frac{i^7}{7!} + \cdots \\ &= \class{red}{1} \class{blue}{+ i} \class{red}{- \frac{1}{2!}} \class{blue}{- \frac{i}{3!}} \class{red}{+ \frac{1}{4!}} \class{blue}{+ \frac{i}{5!}} \class{red}{- \frac{1}{6!}} \class{blue}{- \frac{i}{7!}}\cdots\\ &= \left(\class{red}{1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!}} + \cdots\right) + \left(\class{blue}{i - \frac{i}{3!} + \frac{i}{5!} - \frac{i}{7!}} + \cdots\right)\\ &= \left(1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} +\cdots\right) + i\left(1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots\right) \end{flalign} \]
Notes:

Do those series seem familiar?

\[ e^i = \left(\class{red}{1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} +\cdots}\right) + i\left(\class{blue}{1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots}\right) \] \[ \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \] \[ \class{red}{\cos(1) = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \cdots} \] \[ \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \] \[ \class{blue}{\sin(1) = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \cdots} \] \[ e^i = \class{red}{\cos(1)} + i \class{blue}{\sin(1)} \]

Generalizing The Major Breakthrough

\[ \begin{flalign} e^{ix} &= 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \cdots\\ &= 1 + ix + \frac{i^2x^2}{2!} + \frac{i^3x^3}{3!} + \frac{i^4x^4}{4!} + \frac{i^5x^5}{5!} + \cdots\\ &= \class{red}{1} \class{blue}{+ ix} \class{red}{- \frac{x^2}{2!}} \class{blue}{- \frac{ix^3}{3!}} \class{red}{+ \frac{x^4}{4!}} \class{blue}{+ \frac{ix^5}{5!}} \class{red}{- \frac{x^6}{6!}} \class{blue}{- \frac{ix^7}{7!}} + \cdots\\ &= \left(\class{red}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}} + \cdots\right) + \left(\class{blue}{ix - \frac{ix^3}{3!} + \frac{ix^5}{5!} - \frac{ix^7}{7!}} + \cdots\right)\\ &= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\right) \end{flalign} \]

Finally, we arrive at Euler’s Formula:

\[ \begin{flalign} e^{ix} &= \left(\class{red}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots}\right) + i\left(\class{blue}{x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots}\right)\\ &= \class{red}{\cos(x)} + i\class{blue}{\sin(x)} \end{flalign} \]
Notes:

Geometric meaning

\(e^{ix}\) plotted on the complex plane. The red circle is a unit circle.

\(x =\)

\(e^{ix} \approx\)

Notes:

Euler’s Formula: An Example

\[ \begin{flalign} e^{2i} &= \cos(2) + i\sin(2)\\ &\approx -0.416 + 0.909i \end{flalign}\]
Notes:

Our original question: what is \(2^i\)?

\[ \begin{flalign} 2^i &= (e^{\ln(2)})^i\\ &= e^{i\ln(2)} \quad \text{(by definition)}\\ &= \cos(\ln(2)) + i\sin(\ln(2))\\ &\approx \cos(0.693) + i\sin(0.693)\\ &\approx 0.769 + 0.639i \end{flalign}\]
Notes:

Euler’s identity

\[ \begin{flalign} e^{i\pi} &= \cos(\pi) + i\sin(\pi)\\ e^{i\pi} &= -1 + 0i\\ e^{i\pi} &= -1\\ e^{i\pi} + 1 &= 0 \end{flalign}\]

If we let \(\tau = 2\pi\)...

\[ \begin{flalign} e^{i\tau} &= \cos(\tau) + i\sin(\tau)\\ e^{i\tau} &= 1 + 0i\\ e^{i\tau} &= 1\\ e^{i\tau} - 1 &= 0 \end{flalign}\]
Notes:

My Calculus Website (if you want to learn/review calculus!)

https://chaddypratt.org/calculus

Notes: